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WAVES CAUSED BY MOVING LOADS IN 
AN ISOTROPIC LAYER INHOMOGENEOUS THROUGH THE THICKNESS* 

A.V. BELOKON and A.V. NASEDKIN 

Problems on motion with a constant subseismic velocity of an oscillating 
load on the boundary of an isotropic elastic layer inhomogeneous over 
the thickness are studied in a three-dimensional formulation. Quantitative 
estimates are given for the upper limits on the magnitudes of the velocity 
of motion and the load vibration frequency for which a unique solution 
exists for the problem in energy classes. In cases when no energy 
solution exists, principles are formulated to extract the unique solution 
and a solution is given in the far field. Results are presented of 
numerical computations of the wave field characteristics in the case of 
the motion of a normal concentrated load in a homogeneous layer. Situations 
are noted in which a different number of waves propagates in different 
layer domains. The problems considered are of interest for seismology 
and in designing aerodrome coverings. 

1. Let an elastic, isotropic, medium inhomogeneous through the thickness occupy a domain 
II =(--oo(.r,Y< +oo; O<z,(l), whose lower boundary is clamped, i.e., 

u (x, Y, 0, t) = 0 0.1) 

The upper boundary is Loaded in such a manner that in a moving system of coordinates 

21 = I - wt, 22 = y, x3 = 5, t = t W) 

the boundary conditions have the form 

C@ (rl, x2, 1, t) = fj (sir zJeiaf (rit 2a) E S; j = 1, 2, 3 (1.3) 

Here S is a bounded domain whose boundary has a continuously differentiable curvature 
at each point. It is assumed that the layer surface is not loaded outside S while the elastic 
constants of the material are subject to the conditions 

x (& p 6%) E c1 (0‘ 11, P (%) E c (0, 1); h, PI P > 6, > 0 

We will study the steady motion in the moving coordinate system (1.2) by assuming that 
the displacement vector in (1.2) has the form 

II (r - Cut, Y, 2, t) = v fq, x*, tgp* (1.4) 

In this case the system of equations of the theory of elasticity takes the form (htij is 
the Kronecker delta) 

(ho m,m),jQ + (p (0ti.j + Uj. t)), j - QW%,II == - Q:J’Vt - 2iQL’W&,,, k = 1, 2,s (1.5) 

For convenience, the problem will be formulated in dimensionless form. The change to 
dimensional parameters is made by means of the formulas 

zd yd ‘d 
XZh, y=,, z=T, w=tud I S-i=!2 

‘sod 

dh, t__td+ 
=aod 

where the dimensional quantities (except for the layer thickness h) are marked with the sub- 
script d. 

We call the problem formulated for Q, wp 0 problem C. The case g = 0, w #0 corresponds 
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to problem B, and the case B#O, w = 0 problem A. For convenience in the subsequent dis- 
cussions, we shall write the symbol CII in place of 8 in (1.4) for this last problem. 

Problems C and B were studied for a half-space in /l, 21. Problems A-C were investigated 
in a three-dimensional formulation for a fluid stratified in depth /3/ and an elastic half- 
space* (*Babe&&o, V.A., Glushkov E.V. and Glushkova N.V., Elastic wave excitation by a 
moving harmonic source, Krasnodar, 1985. Dep. 6470-85 in VINITI, September 3, 1985.1 as well 
as for an acoustic layer.** (**Belokon A.V. and Nasedkin A.V., A model problem on wave 
propagation from moving pulsating loads in an elastic layer. Rostov n/D, 1986. Dep. 3359-B86, 
in VINITI, Nay 11, 1986.). Questions similar to some of those elucidated below were also 
examined in /4, S/ where contact problems for an anisotropic layer were studied. 

we first study problems A-C in energy classes. 

Definition 1. The vector function v Eff,n is called the generalized solution of the 
problems A-C if for any cpEHzn it satisfies the integral identity 

Here H,n is the space of vector functions (real in the case of problem B) that satisfy 
condition (1.1) and leave a finite norm generated by the scalar product 

(WHIn=s [2!-%k (VI %nk (F) $ hvk, k@j, j] ~7% 
n 

Theorem 1. Let 

Then constants n, @a exist such that when the conditions 

52 < wO, w =z (1 - sdiod I/n/p,; PO = max,p h) 

are satisfied an energy solution of the problem A, B, C exists. 
The proof of Theorem 1 is by analogy with the proof of Theorem 2 from /6/. 

(1.7) 

(1.8) 

2. For practical purposes it is not only important to establish the existence of m and 
00 but also to give a quantitative estimate of them. To obtain it we introduce the spaces 
Hsand Hs.,where the scalar product therein id defined, respectively, by the left side of 
(1.6) and the expression 

Obviously, 

ii v IIns > II v ihe, (2.41 
Lemma 1. Under the conditions of Theorem 1 the solution of problem C is given by the 

formula 

where Gk, D are entire functions of their arguments. 
The lemma is proved by the scheme, used to prove Theorem 1 from 161. 
For a medium with constant coefficients pO, p. and ho = pO(h/p)O (problem C,) the formula 

for vk can be constructed explicitly and has the form 12.2) with the functions Got, L)a in 
place ofG, and D, respectively, where 

tf, (a,& o) = ch yz& (a, B, o), I)1 (a, B, 0) = 4Y28 - 
(8% + 4y*) ch ~1 ch ~2 -t yz (8* + ~Y,*Y,~) ah yl. sh YS/(Y,%) 

w = wa + 9, yz = aa -+- fi2, 0 = 2y2 - w2 

(2.3) 
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and the explicit form of Golr is easily reproduced. 

Lemma 2. Let 52 = 0, w< wR' or O(Q(ni2, w< wO(a)< wRt where wRczOd iS the Velocity 

of Rayleigh surface wave propagation and WO (a) is the minimum value between w1 = 

$1 - (2Q/n)2 and w for which the system of equations 

Dr(a,O,~+Q)=O, &Dr(a,O,wa+Q)=O @#-B/w) 

has the real solution a. Then the dispersion equation of problem C, 

Do (a, 6, wa + 52) = 0 (a # --Q/w) 

has no real solutions. 
Note that a simpler but also deeper condition ensuring the validity of the last assertion 

is satisfaction of the inequality w/us + 29/n: < 1. 

Lemma 3. Under the conditions of Lerm;lla 2 and (1.7) problem C, has a unique energy 

solution determined by (2.2). 

Theorem 2. Under the conditions of Lemma 2 and (1.7) problem C has a unique energy 

solution defined by (2.2). 
Theorem 2 results from Lemmas 2 and 3 and the inequality (2.1) and enables us to give 

a quantitative estimate of the constants m and o0 from (1.8). 

3. We will not study the non-energy solutions of problem C. In order to construct a 

unique solution we invoke the principle of limiting absorption and the principle of energy 

radiation to analyse the non-energy solution. In the case of plane problems these principles 

are analysed in detail in /6, 7/. The process of passing from an elastic medium to a medium 

with absorption is described in sufficient detail in the papers mentioned above. The structure 

of the construction of the solution of the plane problem C for a medium with absorption is 

described in /6/. On the basis of these papers it can be shown that the solution has the 

form (2.2) for a medium with absorption, where the quantity wa + 8 - is occurs instead of 

wa+-52. Therefore, the solution in a medium with absorption has the form 

1 
he= 4na 

+- Gr(a,B,a~+Q-4 cs D (a,~,oxz + P -is) exp i- i (cm + BQ)) da dS 
-s 

(3.1) 

Lemma 4. The equation 

D (a, fJ, wa + $2 - ie) = 0 (3.2) 

has no real solutions (a, b) for sf 0. 

The zeros (3.2) obviously determine the homogeneous solutions of the boundary value 

problem (1.11, (1.51, (1.3) for f'=O and E> 0, and consequently, the homogeneous solutions 

that do not grow at infinity in a medium with absorption are zeros. Therefore, (3.1) determines 

the complete and unique solution in a medium with absorption in the class of functions that 

do not grow at infinity. 

On the basis of the principles of limiting absorption, the solution for the elastic 

medium has the form 

ot= lim vke 
s-+0 

(3.3) 

where ulce is given by (3.1). 

Let rs,r~ denote, respectively, the set of real zeros of the equations 

D (a, fi, WCC + 51) = 0, D (a, fJ, o) = 0 (3.4) 

Obviously the set rs contains points of intersection of the set r~ with the plane 

o=wa+51 (3.5) 

in the space (a, fl, 0). 

Lemma 5. Let Q< 00, w< Jfmlp,. Then, if the dispersion surfaces r_~ do not intersect 

mutually and the plane (3.5) is not tangent to r~, then the set rs is represented in the 

form of the finite union of N closed curves L,,j = 1,2,...,N which have no common points 

and do not degenerate into a point. Hence 

IgradD I* = (D,, +wD,,P + D,ga# 0, V (CC, B)E L, (3.6) 

Theorem 3. Under the conditions of Lenrna 5 the solution of problem C is given by using 
the following formula: 
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(3.7) 

Theorem 3 is proved on the basis of an analysis of the shift of the real roots (a@, PO) 
of (3.5) when F is introduced into the complex domain. 

Namely, when condition (3.6) is satisfied the roots of (3.2) close to (ao, PO) can be 
represented in the form 

Ct=U,+ETCOS~+O(B), ~=~o+ETSi"~+O(E) (3.8) 

Expanding the function on the left-hand side of (3.2) in a series in p. in the neighbour- 

hood of (ao, &,) we obtain that 

t = --icg-1 (ao, PO) (3.9) 
ao 

C6(ao,Ba)=- -wcos5, 
ao ao all,, 

a; 
a=aaCOs 5+r sin 5 (3.10) 
0 

where aola; is the algebraic projection of the group velocity vector with the components 

aoiaa = -DJD,,, ho/i@ = -D~,lD~, (3.11) 

in the direction 5 and evaluated at the point (a,, PO) for problem A. 

Formulas (3.8) and (3.9) indeed determine the shift of the roots (a,, PO) in the complex 

domain on introducing e. 

If the plane (3.5) is tangent to the dispersion surface of the setIAat the point (al, B1) 

then for the existence of a bounded limit (3.3), satisfaction of the equalities 

6 (a,, PI, 1~. ~l'el+ Q) = 0 

is necessary and sufficient. 

4. We assume that the curves Lj (i =I, 2, . . . . N) have a curvature different from zero 

at each point. Later we shall need the formula /8/ 

s f (a, P) exp {-- i (as + Bxa)l ds = 
r 

exp (- irl, cos (0 - Q) - ‘lani sign (p” (qJ sin 0)) + 0 (r-l), 

r-00; l,==I(ak,fik), ak=l,cosqC, f3r=lrsinqk, 

zI=rcose, z2=rsinf3 

Here r = r (a, p) is a curve in R2, which in this case agrees with part of the curve Lj, 

and akr fir are stationary points determined from the equation 

$-case + $ sin e=O, (a,fi)czr (4.2) 

or, equivalently, from the system of equations 

D (a, p, ~a + 52) = 0, D,, - D,g ctg I3 + wD,, = 0 (4.3) 

for fixed u, and 9; xh(e)> 0 is the curvature of the curve I' at the point (ar,ph-) depending 

on 0 by virtue of (4.2) or (4.3). 
Using (3.7) and (4.1) it can be shown that the solution of problem C in the far field 

has the form 

h=*;J ;& Rk(%,B,,Xd x (4.4) 

exp {- i (Lr 00s (e - 11,) - l/k sign c,~)] + 0 (r-l), r -+ 3. 

cem = ce (a,, B,), Grn = c, (cfm, B,) 

HereH(Z the Heaviside function, (a,, fi,,,)(m= 1,2,.. .,hf(j)) is the complete set of 

stationary points on Ljfor a fixed 0, where M(j)=2 in the case x>O everwhereon Lj; ce, c, 

are defined in the same way as (3.10), and R is the external unit normal to Lj. 
Asymptotic representations analogous to (4.4) have been obtained earlier /3/ for other 

problems with moving pulsating effects (see the papers cited in the previous footnotes also). 

The solution (4.4) obtained enables us to make an energy analysis of the waves being 

propagated. To do this, the energy balance equation for the system of equations of motion in 



the moving coordinate system (1.2) is written in the form 

aE/at + div J = 0 

E =+ Pn(u)ub.~ + P@P'- wudl 

J,,,== - [ukm(u)(up’- wu& + 6,,wE], m= 1,2,3 

(4.5) 

u (a, x2, 23, Q=u(s---6 y, 2, q 

Here E is the mechanical energy in the moving coordinate system. Hence, it is natural 

to consider J, as the components of the energy flux densitiy vector. (These energy character- 

istics are introduced in dimensionless form.) 

Taking into account that for large I the boundary conditions of the problem under con- 

sideration are homogeneous, we find 
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(4.6) 

Now we represent one of the wave (4.4) in real form 

z+ = r-'/s (ilie cos 6 + vks sin S), 6 = cz.zl + fizz - 6% (4.7) 

where Vbc and Vba are, respectively, the real and imaginary parts of the expression 

i (2n Ix I )-"r Rk (a, f3, x3) exp (l/a ni sign c,) 

at the stationary points. 

Furthermore, we calculate the quantities averaged over the period of vibrations that 

occur in (4.5) and (4.6). Taking into account that the average energy and the energy flux 

from (4.6) are asymptotically additive quantities for waves of the form (4.41, and executing 

operations analogous to /6/ for deriving the average formulas in the plane problems, we find 

Taking into account that at the stationary points 

SsinO- *cosO-20sin0=0 
afi 

as follows from (4.3) and (3.11), it can be obtained from (4.8) that the energy flux in the 
direction of the r axis for fixed 0 equals 

P, = (&&%!I - IU cos 0) E (4.9) 
while the energy flux in the direction I3 equals zero. 

We now formulate the principle of energy radiation for problem C. 

Definition 2. We consider the solution of problem C to be subjected to the energy 
radiation principle if the condition 0< P,< co is satisfied for a wave of the form (4.7) 
being propagated. 

Since only those waves for which CR"' =ao/%l -u?cos8> 0, are actually selected by the 
functions H(Ce") in (4.4), it follows from (4.9) that P,> 0. Therefore, the solution 
constructed on the basis of the limiting absorption pronciple under the conditions of Lemma 5 
does not contradict the energy radiation principle. It can be shown that the solution con- 
structed on the basis of the energy radiation principle will have the form (3.7). Therefore 
the following will hold. 

Theorem 4. Under the conditionsofLemma 5 the solution of problem C constructed on the 
basis of the limiting absorption and the energy radiation principles are in agreement. 

It can be obtained from (4.7)-(4.9) that the total energy flux passing through an in- 
finitely remote cylindrical surface equals 
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We note that the criterion for extracting a unique solution of problem C cannot be the 
condition P>O since it is clear from the preceding that a non-unique solution can be 
constructed in this case. 

5. As an illustration of the wave propagation processes in the far field we consider 
problem C for a homogeneous layer subjected to the moving pulsating normal concentrated load 
P (21. z,)=- ~(z,,Q) The values of P and w are selected so that the conditions of Lemma 5 are 
satisfied. 

The characteristic form of the curves I;i is shown in Figs-l-3 for @>O in this case for 
the following values of w,Q,v,: 0.5, 2, 0.29 (Fig.l), (0.6, 2, 0.29 (Fig.Z), 0.4, 4.25, 0.43 
(Fig.3 where only one of the two Lj curves available here is shown). For @<O the Lj curves 

are symmetric to those presented in Figs.l-3. (All the Lf curves are symmetric in [, because 
of the same symmetry of the function D, from (2.3)). 

Fig.1 Fig.2 

Fig.3 Fig.4 

a 2 Y a 0.1 0.2 

Fig.5 Fig.6 

As follows fromthepreceding, for a fixed angle 8 in the z1.z2 plane the stationary 
points on Lj are defined as points at which the external normal to the curve makes an angle 
El with the positive direction of the ct axis. The angle 8 is here measured clockwise (Fig-l) 
if we have en>0 on Ly, and counter-clockwise if +<O. On all the curves shown in Figs.l-3, 
c,>O. 

The curvature of the curves in Fig.1 never vanishes, consequently, for any angle 8 there 
is just one point on Lj. Therefore, one wave of the form (4.4) corresponds to each curve here. 

For fl>O on the curve Lj in Fig.2 there are two points of inflection marked with open 
circles. At these points the normals make angles i?,~58.8" and 8,=166,4" with the positive 
direction of the axis Q, Consequently,three waves generated by one curve will propagate in 
domains of the layer h<lel<%. Indeed, three stationary points correspond to such angles, 
and (4.4) is valid even in the case when %<O, except "-signc,n' must be substituted in place 
of signen*. (The curvature x at the point (a.,fi.)ELji.s considered to be negative if the curve 

LI in the neiqhbourhood of this point is concave with respect to the internal domain bounded 
by it). One wave propagates in the remaining domain ofthelayer. 

We have one point of inflection with an angle e,s87.7' for 870 in Fig.3. Here three 
waves propagate in the domain (et>@ 8, while one propagates in the domain I@[<@, (l6t<snf- 

The curvature of the curves x, equals zero at the points of inflexion, while x,-+0 near 
these points. To calculate the field in these domains it is necessary to use formulas of the 
method of stationary phase for second-order stationary points and for closely located station- 
ary points /9/. 

We note that despite the decrease in the field in the neighbourhood of the singular 
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directions as r-I'*, the energy flux P through a cylindrical surface r = cons& 0 < zQ d 1 will be 

bounded as r-m because of the smallness of the apex angle tl of the special domain where 

xm-0 (0-r +a). 

There will be no domains with a different number of waves generated by one L1 curve 

propagating in the case of problem A,, in the case of problem C, for a half-space, and for 

plane problems. 

Graphs of the dependence of Pr on tl corresponding to Lj curves in Figs.l-3 are presented 

in Figs.4-6 for the same values of w,Q,v,. Readout of the values of P? with factors 4rrr 

is carried out from the circle enclosed by heavy lines. The curves or sections of Lj curves 

and their corresponding curves 4xrPr(8) are marked with identical numbers. 

It is seen that the greatest contribution to the energy flux P, is made by sections of 

L1 curves with small curvature. Also singnificant is the contribution of such sections of 

the Lj curves where grad D, is small (the direction 8= JC in Fig.4, and the corresponding 
section of the second curve in Fig.1). 

Finally, we note the following. Points of the LJ curves at which the tangents to the 

curves pass through the origin are denoted by the letters a in Figs.1 and 3 and a, b in Fig.2. 

The sections of the curves between these points and symmetric points to them with respect to 

0L generate reverse waves, i.e., waves travelling from infinity. (for B>O these sections 

of the curves are shown dashed in Figs.l-3). There is no wave motion in r on the boundary 

of the propagation domain for such waves. However, the reverse waves carry energy here to 

infinity and yield no singularities in the energy flux distribution (the parts of the curves 

shown dashed in Figs.4-6). In these cases, the analogue to the Sommerfeld radiation principle 

is spoiled, i.e., the selection principle for waves travelling in a moving coordinate system 

from the source to infinity. 

Therefore, here as in the plane problem /6/, for the case of pre-Rayleigh motion con- 

sidered in this paper, the limiting absorption principle is equivalent to the energy principle, 

but is not equivalent to the analogue of the Sommerfeld radiation principle. 
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